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Exploratory Fishing Report

It appears that this lake has high abundance, low variance of fish.

Why so gloomy? A Bayesian explanation of human pessimism bias in the multi-armed bandit task
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1. Introduction 3. Models

•Multi-armed bandit (MAB) task: exploration vs. exploitation, 
online learning, can be modeled as POMDP 

•Dynamic Belief Model (DBM): Bayesian generative model for 
sequential data assuming abrupt change points 

•Fixed Belief Model (FBM): DBM with no change point 
•DBM predicts human behavior better than FBM in stationary 
environment: 2AFC, inhibitory control, visual search, MAB 

•Why do humans persist in making non-stationary assumption? 
•Human data: 4-armed bandit task, 4 reward environments (high/
low reward abundance, high/low reward variance) 

•Compare 3 models: DBM, FBM, and Reinforcement Learning 
•Recover and explain human “pessimism bias” about reward rates

•107 UCSD students each played 200 15-trial 4-armed bandit 
(“ice-fishing”) games with binary outcomes (reward/no reward) 

•Reward rates for all four arms were generated i.i.d. from four 
Beta distributions (1 for each environment): Beta(4, 2), Beta(30, 
15), Beta(2, 4) and Beta(15, 30) 

•Subjects shown 20 samples from the true distribution to inform 
their prior beliefs 

•32 subjects reported their estimates of the reward rates of the 
unseen arms at the end of each game 

Dynamic Belief Model 
DBM [1, 2] assumes the subject believes the reward rate undergoes 
discrete, un-signaled changes with a per-trial probability of 1-γ 
(contrary to experimental design). Generative model: 

Recognition model (Bayes’ Rule, updates only for chosen arm): 

The reward belief is thus a weighted sum of the posterior and the 
prior         (repeatedly injected on each trial due to non-stationarity): 

p(θt
k = θ |θt−1

k ) = γδ(θt−1
k − θ) + (1 − γ)p0(θ)

p(θt
k |Rt, Dt) ∝ p(Rt |θt

k)p(θt
k |Rt−1, Dt−1),  if Dt = k

p(θt
k |Rt, Dt) = p(θt

k |Rt−1, Dt−1),  if Dt ≠ k

p(θt
k = θ |Rt−1, Dt−1) = γp(θt−1

k = θ |Rt−1, Dt−1) + (1 − γ)p0(θ)

Fixed Belief Model 
FBM [2] assumes reward rates fixed during the game (consistent with 
experimental design); can be viewed as a special case of DBM: γ = 1. 
The prior         enters only once (on trial 1) and fades in influence

Reinforcement learning (RL) 
Delta-rule updating [3]: 

Two free parameters,    and     , which we call “prior” as shorthand. 
DBM is related to RL in that the stability parameter in DBM also 
controls the exponential weights as the learning rate in RL does, but 
RL has no means of injecting a prior bias on each trial [4].
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Softmax decision policy 
The choice probabilities are modeled by softmax: 

p(Dt = k) =
( ̂θt

k)b

∑K
i ( ̂θt

i)b

Optimal policy 
The optimal policy can be computed via dynamic programming, 
though previously we showed humans do not behave optimally [2].

•(+M, -V): high mean and low variance environment 
•Human performance close to optimal policy and higher than 
chance level (chance level equals to prior mean) 

•Reported reward rate lower than the true mean 
•DBM recovers prior mean most similar to human report

4. Results
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3. Models

2. Experiment

4. Results

5. Discussion
•10-fold cross validation 
•DBM achieves significantly higher 
per-trial likelihood 

•DBM achieves lower BIC/AIC 
•Further evidence that humans 
assume non-stationarity by default

The three models predict different shift rates: 
•DBM: high probability of having changed to a lower reward 
rate ⇒ readily shifts away from a previously winning arm 

•FBM: estimates follow long term stats ⇒ reluctant to switch 
•RL: constant learning rate ⇒ slower than DBM to adjust

•DBM predicts human performance the best 
•FBM optimal with lower prior ⇒ compensates for simplified 
exploration policy (softmax) 

•DBM optimal with even lower prior ⇒ compensates for 
(incorrect) non-stationary assumption 

•Highest reward achievable by DBM and FBM quite close

•Four Models simulated with 
varying assumed prior mean 

•Diamond markers: x-estimated 
prior mean, y-human performance 

•Dotted line: true prior mean

•Humans underestimate prior reward rates (pessimism bias)  
•This underestimation recoverable by DBM, not FBM or RL 
•Reward rate underestimation may help with performance, though 
human assumption a compromise between veridical 
representation of environmental statistics and optimizing reward 

•Multiple human sub-optimalities combine to achieve better 
performance than might be expected

•Shift rate: shifting to other arms 
after a failure preceded by three 
consecutive successes 

•DBM predicts shift rate most 
similar to human data
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