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Abstract

Humans are often faced with an exploration-versus-
exploitation trade-off. A commonly used paradigm,
multi-armed bandit, has shown humans to exhibit an “uncer-
tainty bonus”, which combines with estimated reward to drive
exploration. However, previous studies often modeled belief
updating using either a Bayesian model that assumed the
reward contingency to remain stationary, or a reinforcement
learning model. Separately, we previously showed that human
learning in the bandit task is best captured by a dynamic-
belief Bayesian model. We hypothesize that the estimated
uncertainty bonus may depend on which learning model is
employed. Here, we re-analyze a bandit dataset using all
three learning models. We find that the dynamic-belief model
captures human choice behavior best, while also uncovering
a much larger uncertainty bonus than the other models.
More broadly, our results also emphasize the importance of
an appropriate learning model, as it is crucial for correctly
characterizing the processes underlying human decision
making.

Keywords: decision making; multi-armed bandit; reinforce-
ment learning; Bayesian modeling

Introduction

In daily life, humans frequently need to make choices among
options with imperfectly known consequences, whereby each
choice not only yields immediate reward outcomes but also
has long-term informational value for future choices. In this
scenario, the decision-maker is faced with an exploration ver-
sus exploitation trade-off — whether to choose the seemingly
most rewarding option based on current knowledge to max-
imize the immediate reward, or the novel or less known op-
tions to gather more information. Information value can be
measured by uncertainty — higher uncertainty leads to larger
information value. Thus, a rational decision-maker should
anchor their choices not only on the perceived average re-
ward value of each option but also on their internal uncer-
tainty: a little explored second-best option might well turn
out to be highly lucrative and thus deserves a bonus for explo-
ration. Experimentally, this class of problems is often stud-
ied using a gambling task known as the multi-armed bandit
task (Robbins, 1952). In a classical multi-armed bandit task,
each option has a fixed but unknown (to the participant) re-
ward distribution, and choosing an option reveals the reward
outcome of that option but not the other options. Because
bandit-like tasks elegantly capture the tension between ex-
ploration and exploitation, they are studied extensively not

only in cognitive science (Cohen, McClure, & Yu, 2007; Wil-
son, Bonawitz, Costa, & Ebitz, 2020), but also in statistics
(Gittins, 1979), machine learning (Sutton & Barto, 2018), and
economics (Sauré & Zeevi, 2013; Francetich & Kreps, 2020).
Reducing uncertainty is often hypothesized to drive hu-
man exploratory choices as a rational motivation (Cohen et
al., 2007). One challenge to empirically identify uncertainty-
driven exploration is that reward and uncertainty tend to be
anti-correlated in a classical bandit task due to a sampling
bias — participants choose the more rewarding option more
frequently, thus having a lower uncertainty on the more re-
warding option. A clever variant (Wilson, Geana, White,
Ludvig, & Cohen, 2014) of the bandit task has been pro-
posed to better de-correlate reward and uncertainty by adding
a forced-choice period (passive observations) before free-
choice trials. In this task, human choice behavior has been
shown to display an uncertainty bonus (Wilson et al., 2014;
Cogliati Dezza, Yu, Cleeremans, & Alexander, 2017).
Notably, a majority of the work on uncertainty bonus as-
sumes that humans have a veridical understanding of the task
structure (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006;
Speekenbrink & Konstantinidis, 2015; Gershman, 2018). In
particular, some of them assume that humans know that the
reward distributions of the different options remain station-
ary throughout each game, as is true in the experimental de-
sign (Gershman, 2018). However, in a variety of commonly
used behavioral tasks (Yu & Cohen, 2009; Ide, Shenoy, Yu,
& Li, 2013; Shenoy, Rao, & Yu, 2010; Yu & Huang, 2014;
Zhou, Guo, & Yu, 2020), including bandit tasks (Zhang &
Yu, 2013; Guo & Yu, 2018; Zhou et al., 2020), we have found
human subjects to behave as though they believe environmen-
tal statistics (such as the mean of the reward distribution) to
be non-stationary over time, even when the experimental de-
sign is truly stationary. This possibly misspecified internal
belief about non-stationarity adds an interesting wrinkle to
the story about uncertainty-driven exploration. For example,
a previous study (Yu & Huang, 2014) found that while hu-
mans can appear to be doing probability matching (choos-
ing the option with probability that it being the right answer)
on average in a choice task (where outcomes of all options
are revealed), they can actually be shown to be maximizing
(choosing the option with the highest probability of being the
right answer), once it is taken into account that their inter-
nal beliefs are fluctuating due to chance fluctuations in local



observation statistics. Specifically, this belief fluctuation can
be well modeled as Bayesian inference incorporating a belief
that task statistics can undergo drastic changes at unsignaled
“change points” (Yu & Cohen, 2009; Yu & Huang, 2014).
This finding resolved an important mystery of why humans
would appear to match when the rational thing to do is to
maximize (Herrnstein, 1961). Similarly, in the context of the
bandit task, if the subject’s internal beliefs about the temporal
dynamics of reward statistics are not correctly captured, then
the estimation of the uncertainty bonus, relative to reward and
random exploration, could also be highly inaccurate.

Here, we hypothesize that humans make more uncertainty-
driven decisions than previously estimated, when we intro-
duce a learning model that better captures their behavior. If
the learning model is inaccurate, then a truly uncertainty-
driven choice would be mistakenly classified as random
exploration (Wilson et al., 2014). To test this hypothe-
sis, we re-analyze data from a previously published study
(Cogliati Dezza et al., 2017), which uses the experimental
design that attempts to de-correlate reward and uncertainty
(Wilson et al., 2014). The study originally found a small
but significant goodness-of-fit improvement by introducing
an uncertainty-related term to a reinforcement learning (RL)
model (Cogliati Dezza et al., 2017). Besides a widely used
RL model (Q-learning) (Wilson et al., 2014; Cogliati Dezza et
al., 2017; Lefebvre, Lebreton, Meyniel, Bourgeois-Gironde,
& Palminteri, 2017) and a Bayesian ideal observer model that
assumes subjects’ generative beliefs are veridical (Daw et al.,
2006; Steyvers, Lee, & Wagenmakers, 2009; Speekenbrink
& Konstantinidis, 2015; Gershman, 2018), we additionally
include a Bayesian dynamic belief model (Daw et al., 2006;
Yu & Cohen, 2009) to capture the possibility that subjects
assume reward statistics to be non-stationary. We compare
the three learning models in terms of how well they capture
human behavior, as well as their predictions on the relative
importance of reward, uncertainty, and residual stochasticity
in human choices.

Methods
Data

We re-analyze data from the experiment in (Cogliati Dezza
et al., 2017). Twenty-one participants (12 women; aged 19-
29 years, mean age 23.24) performed 128 games of a bandit
task, where each game involved repeated choices among 3
options. Each option paid off between 1 and 100 points, and
the actual reward was sampled from a Gaussian distribution
with standard deviation of 8. The reward mean of each op-
tion was set to be 30 or 50, and +/- 0, 4, 12, 20 points (with
a mean of 40). Participants were told that the options do not
change during the same game, but are replaced by new op-
tions at the beginning of each game, which is consistent with
the experimental setting. In each game, participants first play
a forced-choice period, where they have to choose and ob-
serve the option indicated by the experimenter. Then they
are given 1-6 free-choice trials, and the total number of free

choices is not informed to the participants. In 50% of the
games are the unequal information condition, where partici-
pants chose one option 4 times, another option 2 times, and 0
time for the remaining option in the forced-choice period. In
50% of the games, the three options were sampled equally in
the forced-choice period.

Model Description

We assume subjects know the standard deviation of the true
reward distribution (¢, = 8), but are trying to estimate the
mean of the reward distribution u, based on observed out-
comes. To model this process, we consider three learning
models - two Bayesian learning models (Daw et al., 2006;
Yu & Cohen, 2009), FBM and pbRL, and a RL model
(Rescorla, Wagner, & Others, 1972), each coupled with two
decision policies (Daw et al., 2006), softmax and uncertainty
bonus. Knowledge-RL (kRL) used in the original paper
(Cogliati Dezza et al., 2017) can be viewed as RL with an
uncertainty bonus in the decision policy. kRL was previously
shown to explain human data better than RL (Cogliati Dezza
et al., 2017). We refer to the same model as RL with an un-
certainty bonus or kRL interchangeably.

For Bayesian models, we assume a Gaussian likelihood
with mean g, and variance 62 (u is a random variable and
62 = 8 is assumed to be known), and a Gaussian prior over
4 with mean yg and variance 6(2). The posterior distribution
over y, is also Gaussian with mean 1, and variance (62)2,
given choices and rewards up to trial . Let D, and R, denote
the actual choice and reward on trial ¢, respectively.

Fixed Belief Model (FBM) FBM (Yu & Cohen, 2009) is
the veridical Bayesian generative model that assumes envi-
ronmental statistic to remain fixed throughout the game, i.e.
the rewards are sampled from a Gaussian distribution with
fixed but unknown mean. With a Gaussian likelihood, FBM
can also be viewed as a Kalman filter with an identity state
transition, which has been used to model human learning in
bandit tasks (Gershman, 2018). The posterior mean and vari-
ance for the chosen option can be computed recursively:

B = e+ ke (R — ) (1)
(6,7 = (1—k)(6})%, )

where the learning rate k; (Kalman gain) is given by k; =
(61)?/((8%)* + 62). The posterior mean and variance for

the unchosen options remain the same, i.e. ,&;jl

(6,12 = (8%)%if Diyy # k.

Persistently Biased RL (pbRL) The Dynamic Belief
Model (DBM) is a Bayesian generative model that assumes
the reward statistic for each option to undergo discrete,
unsignaled changes, such that on each trial it remains the
same with probability o, and is re-sampled from the prior dis-
tribution with probability 1 — o (Yu, Dayan, & Cohen, 2009).
It is identical to FBM otherwise.

An RL-style model, pbRL, has been shown to well approx-
imate DBM in the setting with discrete observations (Ryali,

= i, and



Reddy, & Yu, 2018). pbRL continuously injects a persistent
prior bias (Ryali et al., 2018), in addition to updating the be-
lief with the prediction error:

o= (1—ouo+ oy +g(R — i "), if D, =k, (3)
fi, = (1— oo + o', if Dy £k, )

where & (0 < o0 < 1) is the DBM parameter related to the sta-
bility of the environment, g (0 < g < 1) is the learning rate,
and o is equivalent to the mean of the re-sampling distribu-
tion in DBM.

We note here that pbRL is also the exact inference algo-
rithm for a previously used generative model that assumes
continuous changes of reward mean along with continuously-
valued reward observation (Daw et al., 2006) has the same
inference model as pbRL. This generative model can be
viewed as a special Kalman filter with the assumption that
the state variable is continuously pressured toward a “center”
value. The generative process of this (“centered”’) Kalman
filter model is given by

M1 =My + (1 =21)0+v, (5)

where A is the decay rate, 0 is the decay center, and v fol-
lows a zero-mean Gaussian distribution with standard devi-
ation 64. The inference process of this model is given by
the predictive distribution with mean and variance that can be
computed recursively:

B = M+ (1-2)8 ©)
671" = N6}y, + 05 (7)

The predictive distribution becomes the prior for the Bayesian
update on the next trial, similar to equation (1) and (2) i.e.

fop1 =" + k(R — 4:7"°) (®
671 = (1—k)o7"™ ©)

Comparing equation (6) and (8) with equation (3) (plug-
ging equation (8) into (6)), we can see the similarity of the
inference model pbRL and the inference process of this (“cen-
tered””) Kalman filter. Thus, pbRL has a nice universality fea-
ture: it has similar inference for (“centered’”) Kalman filter for
continuous observations and changes, and approximately op-
timal inference for DBM for discrete observations. For sim-
plicity, in this paper, we also refer to this (“centered”’) Kalman
filter model as pbRL.

Separately, we also note that pbRL shows the theoretical
relationship between Bayesian models and RL: pbRL can be
interpreted as a RL model that updates its Q-value as a linear
combination of the standard Rescorla-Wagner update rule and
another term that is the decay center uyo; the relative weight of
the two terms is determined by o, which can be interpreted
statistically as the stability parameter in DBM or as the decay
rate parameter, A, in the “centered” Kalman Filter model.

Reinforcement Learning (RL) The learning rule for a
commonly used RL model (Rescorla et al., 1972) also known
as Q-learning is

M1 =ty +€(Ry — pr), (10)

where € is the learning rate. (Cogliati Dezza et al., 2017)
extends this learning rule to knowledge RL (kRL), which
also tracks the uncertainty by counting the observations on
each option:

t
I = ZID,,:k (11)

=1

This information term is then added into the decision policy
as described below.

Exploration Strategies We consider two decision policies
- a pure softmax policy and one incorporating an uncertainty
bonus (Daw et al., 2006; Speekenbrink & Konstantinidis,
2015; Gershman, 2018), which adds a weighted uncertainty
term to the estimated mean reward:

P AYE})

PP =R = 5 e

(12)

where b is the softmax inverse-temperature parameter, and 'y
is a coefficient of the uncertainty bonus. When y = 0, the
decision policy reduces to the pure softmax strategy. This
uncertainty bonus policy can also be viewed as a special case
of the Upper Confident Bound decision policy (Auer, 2002;
Gershman, 2018) with additional decision noise. For kRL,
we plug in the uncertainty term as 6} = —1I}.

Model Fitting

Parameters are fit using only free-choice trials, optimizing
for maximum likelihood. We estimate the parameters using
MATLAB function fmincon with 20 randomly sampled initial
points to mitigate the issue of local minimums. For RL and
kRL, the initial reward mean is set to be 40. For FBM and
pbRL, the prior is set to be a Gaussian distribution with mean
40 and standard deviation 18.

Model Recovery

We simulate pbRL model with subjects’ individually fit pa-
rameters 20 times under the same setting as the experiment,
and fit pbRL model to the simulated data. The recovered
decay rate (r = 0.85 , p < .001), decay center (r = 0.92 ,
p < .001), decay variance (r = 0.91, p < .001), uncertainty
bonus coefficient (r = 0.90 , p < .001) and softmax inverse-
temperature are all positively and strongly correlated with the
true parameter values that were used to simulate the data.

Results
Model Comparisons

We fit two Bayesian learning models (Daw et al., 2006; Yu &
Cohen, 2009), pbRL and FBM, and a reinforcement learning
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Figure 1: Error bars: SEM across 21 participants or 50 simulation runs. (A) BIC of 3 learning models + 2 decision policies.
kRL is shown as RL with an uncertainty bonus. (B) Average predictive likelihood of three models on the choice in the first
free-choice trials made by human participants. kRL(all) and pbRL(all) are fit on all free-choice trials. kRL(1st) is fit on 1st
free-choice trials only. (C) Choice probability of human participants or simulated models on the 1st free-choice trials in the
unequal information condition. Oseen: option with no observation in the forced-choice period. reward(max): option with the
highest average reward. If the chosen option is both Oseen and reward(max), it is counted as reward(max). (D) Model predictive
choice type of the choices made by human participants. reward: choose the option with the highest estimated reward mean.
uncertainty: choose the option with the highest reward + uncertainty, but not the highest reward.

model (RL) (Rescorla et al., 1972) to the data, each coupled
with a softmax or (softmax + uncertainty) policy. We com-
pare the models using Bayesian information criterion (BIC)
(Figure 1A), which reward data likelihood and penalizes the
number of model parameters: lower BIC is better. RL + un-
certainty is equivalent to kRL (Cogliati Dezza et al., 2017).
As in prior studies (Cogliati Dezza et al., 2017; Wilson et
al., 2014; Speekenbrink & Konstantinidis, 2015; Gershman,
2018), an uncertainty bonus improves model fit for all learn-
ing models (one-sided paired ¢-test: RL: p < .001; FBM:
p < .001; pbRL: p < .001). With an uncertainty bonus,
pbRL explains the data better than RL or FBM (one-sided
paired #-test ppRL<RL: p < .001; ppbRL<FBM: p < .001).
At the individual subject level, all but one participant are bet-
ter explained by pbRL (+ uncertainty bonus) than kRL (RL
+ uncertainty bonus). Thus, pbRL explains human data the
best, by allowing the estimated reward mean to continuously
drift toward a center value. This is consistent with previ-
ous findings that humans behave as though they assume non-

stationarity in bandit tasks despite true stationarity (Guo &
Yu, 2018; Zhang & Yu, 2013; Zhou et al., 2020).

Next, we take a closer look at the first free-choice trial,
where the reward and uncertainty are the most decorrelated
(Wilson et al., 2014). Taking uncertainty bonus as a better
decision model, we compare pbRL with kRL using predic-
tive average likelihood on the first free trial (Fig. 1B), i.e. the
probability that the models assign to the choices participants
made. We find that kRL predicts the first free-choice trials
worse than pbRL, when both models are fit using all free-
choice trials (one-sided paired z-test: p < .001). If we fit kKRL
model only on the first free-choice trials, it achieves similar
average likelihood with pbRL that is fit on all free-choice tri-
als (two-sided paired ¢-test: p =0.66). FBM achieves slightly
(mean difference: -0.01) but significantly worse performance
than pbRL (not shown, t-test: p < .001). In other words,
while kRL can capture human choice behavior similarly well
as pbRL on the first free-choice trial, it does a worse job on
subsequent trials, as humans update beliefs based on observed



outcomes and a good learning model becomes more critical.

To better understand how pbRL explains human behav-
ior better than the other models, we simulate the models
50 times using parameters estimated from the human data.
We restrict our analyses to the unequal information condi-
tion where the three options are sampled 0, 2, and 4 times in
the forced-choice period. We compare the models with the
human data using choice probabilities in the 1st free-choice
trial. We compute the percentage of first free-choice trials that
the models or participants choose the never-explored option
(Oseen), the option that has the highest average reward (re-
ward(max)), or the other option (presumed to be random ex-
ploration (Wilson et al., 2014)). pbRL predicts similar choice
probabilities as human subjects (Fig. 1C). kRL can also pre-
dict similar choice probabilities as humans and pbRL, but
only when fit using the first free-choice trials and not when
fit using all free-choice trials. FBM predicts similar results as
pbRL (not shown), with slightly lower choice probability on
Oseen and slightly higher on reward(max).

Next, we look at how different models explain partici-
pants’ actual first free choice (Fig. 1D). The choice is coded
as reward-driven if the model assigns the highest estimated
reward to the chosen option, as uncertainty-driven if it has
the highest Q-value (reward + uncertainty) but not the high-
est estimated reward, and random otherwise. Consistent with
the trend in the model-free analysis of human data (Fig. 1C),
pbRL predicts that more than half of the choices are driven
by uncertainty. kRL, fit using only the first free-choice trials,
predicts less uncertainty-driven but more reward-driven (one-
sided paired #-test: uncertainty: p < .001, reward: p < .001)
Both pbRL and kRL models attribute choice to random noise
less than FBM (one-sided paired ¢-test: pbRL: p < .001, kRL:
p < .001. Overall, our analysis indicates that using a bet-
ter learning model (pbRL as opposed to RL or FBM, based
on BIC) yields a much larger uncertainty bonus and slightly
smaller random stochasticity in choice behavior than sug-
gested by previous learning models.

To illustrate the different predictions made by pbRL and
kRL (1st), we plot an example sequence from actual human
data (Fig. 2). The left panel shows the model estimated re-
ward mean, and the right panel shows the model value func-
tion (estimated reward + estimated uncertainty). The first
row shows the estimations made by pbRL, and the second
row shows the estimations made by kRL. The three options
are color-coded . The top panels show participants’ actual
choices (color-coded) and rewards, with first six trials in the
forced-choice period highlighted in gray. pbRL predicts that
the reward mean is continuously devalued due to a negative
decay center (discuss below), especially for the unchosen op-
tions, whereas kRL assumes the estimated reward mean to
stay the same for the unchosen options. On trial 7 (first free-
choice trial), the subject chooses the novel (yellow) option
and receives a poor outcome (24); on the next trial, the subject
shifts away from the yellow option to exploit the blue option
(highest estimated reward) after one observation, although

yellow still has the highest uncertainty. Importantly, kRL re-
duces the magnitude of uncertainty linearly with respect to
the number of times an option is observed; in contrast, ppRL
reduces its estimate of uncertainty much more quickly the
first time an option is observed than later on (Kalman gain
decreases more rapidly at the beginning than later on, when it
reaches an asymptotic value). This nonlinear uncertainty re-
duction allows pbRL to more rapidly reduce the uncertainty
bonus after the first observation on the novel option, com-
pared to kRL, thus allowing it to capture subjects’ tendency
to shift away from a novel option after one observation.

Model Parameter Analysis

Since pbRL with an uncertainty bonus is the best-fitting
model, we examine its estimated parameters to gain more in-
sights into human behavior. The decay rate controls the speed
of the diffusion process assumed by the underlying continu-
ous changes (see Methods). With decay rate equal to 1, the
reward mean stays the same across trials — a stationary be-
lief. The recovered decay rate parameter is 0.94 (SEM=0.01
across participants), which means the reward mean is expo-
nentially decaying to about half the difference between ini-
tial value and asymptotic value (decay center) after 11 trials.
The decay center, which is where the reward estimate decays
toward in the absence of observations, is estimated to be -
81.72 (SEM=28.69). This means in the continual absence of
observations, an option eventually becomes very lowly val-
ued in terms of estimated reward mean. The estimated de-
cay rate and decay center are negatively correlated in the
sample (r = —0.63,p < .01), but they can be reliably esti-
mated jointly based on model recovery results — thus the anti-
correlation may reflect something “real” in the neural mech-
anisms underlying learning and decision making, instead of
arising as an artifact of the model-fitting process. The es-
timated uncertainty bonus coefficient is 4.05 (SEM=0.53),
which is significantly non-zero (two-sided #-test: p < .001).
An uncertainty coefficient of 4.05 indicates a large uncer-
tainty bonus, since the standard deviation of the predictive
distribution is on the order of 10-20 (for example, the stan-
dard deviation ranges from 7.8 to 18 in the example sequence
in Figure 2), leading to an overall product of 40-80 — this
is comparable to the estimated meant reward, which is typi-
cally around 50 or lower. This explains why this model pre-
dicts large number of primarily uncertainty-driven choices
and relatively fewer reward-driven choices (Figure 1D). We
also find that the cumulative reward earned in the experi-
ment is positively correlated with the decay rate parameter
(r =0.49,p < .05) and the softmax inverse-temperature pa-
rameter (r = 0.78, p < .001), but not the other parameters.
At the individual level, only two out of twenty-one par-
ticipants have negative coefficients for uncertainty (-0.99, -
1.18), which indicate an uncertainty penalty, i.e. instead of
information-seeking, they tend to avoid high-uncertainty op-
tions. From a model-free perspective, these two participants
indeed have a lower choice probability for the Oseen options
in the first free-choice trial (0.50 and 0.44 respectively) com-
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Figure 2: An example sequence of actual choices and rewards from the experiment and model predictions on this sequence. The
three options are color-coded (blue, red and yellow). The numbers on top show the actual choices (color-coded) and reward.
The first six trials are the forced-choice period. Left: model estimated mean reward before make the choice on each trial. Right:
model estimated option value (reward+uncertainty) before make the choice on each trial. Top row: pbRL. Bottom row: kRL.

pared to other participants (mean=0.68, median=0.70). One
of those two participants with the more negative uncertainty
bonus coefficient (-1.18) also has the lowest reward earned
among all participants (56), with the other participant per-
forming around the average or median (60).

Discussion

In this work, we find that pbRL recovers a larger uncer-
tainty bonus than previously identified using either one of
the other two commonly used learning models. pbRL with
an uncertainty bonus also best captures human exploratory
choices among the three learning models considered. kRL
was previously found to better capture human data than RL
(Cogliati Dezza et al., 2017). Compared to kRL, we find
that pbRL does a better job of accounting for both human
exploratory choice patterns and sequential learning and deci-
sion making, as it is able to simultaneously able to capture
well both the choices on the first free-choice trials as well
as on the subsequent trials; whereas kRL can only capture
the first free-choice trial responses well, in particular failing
to capture subjects’ tendency to return to a more exploitative
strategy after the first free-choice trial. Our Bayesian model
provides a normative account of targeted exploration — the
exponential discounting in learning comes from a dynamic
belief about task statistics, the decay center reflects an overall
underestimation of unchosen options, and the directed explo-
ration component comes from an uncertainty bonus. More
broadly, consonant with prior work (Yu & Huang, 2014), it
once again illustrates the importance of having an appropriate
learning model in order to accurate understand the decision
process. As illustrated by this work, when human participants
are assumed to be ideal observers (having correct generative
assumptions such as stationarity of reward statistics) or mod-
eled with a heuristic reinforcement learning model, the im-
portance of uncertainty-driven exploration can be artificially
diminished, and the magnitude of choice stochasticity can be

artificially elevated.

The finding of a low (negative) decay center is consistent
with previous findings of an underestimated prior mean in bi-
nary bandit tasks (Guo & Yu, 2018; Zhou et al., 2020). It
has been shown that an underestimated prior mean can help
earn more reward (Guo & Yu, 2018), and produce apparently
larger learning rate for positive prediction errors than nega-
tive prediction errors (Zhou et al., 2020). A low decay center
is also consistent with previous reinforcement learning incor-
porating a forgetting component (Ito & Doya, 2009; Barr-
aclough, Conroy, & Lee, 2004; Cinotti et al., 2019; Hattori,
Danskin, Babic, Mlynaryk, & Komiyama, 2019) — the uncho-
sen option is “forgotten” toward a lower value. A low decay
center with a positive uncertainty coefficient might provide a
natural way to trade off exploration and exploitation. Hav-
ing a low decay center causes persistent devaluation of the
unchosen option, making the agent more likely to stick with
the current rewarding option, thus exploiting. A positive un-
certainty coefficient drives choices toward high uncertainty
options, thus exploring. A negative decay center also predicts
that with the passage of sufficiently many unchosen tries, the
estimated value of an option becomes aversive, such that it
would never be chosen except for any random stochasticity
in the decision policy (such as in softmax). Future studies us-
ing much longer “games” than the current study are needed
to examine this question.
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